Shoulder Arthroscopy (Cadaver)
Main Text
Table of Contents
Shoulder arthroscopy is one of the most common procedures performed in orthopaedic surgery. It can be utilized to identify various pathologies including rotator cuff tears, degenerative arthritis, subacromial impingement, and proximal humeral fractures. With continued advancement in arthroscopy, patients benefit from smaller incisions, reduced risk of postoperative complications, and faster recovery compared to open surgery. Shoulder arthroscopy is performed either in the lateral decubitus position or in the beach chair position (BCP) as seen in this video. The BCP provides greater benefits such as decreased neovascularization during portal placement, fewer cases of neuropathies, and reduced surgical time. In addition to position, there are various portals used in shoulder arthroscopy, with the posterior portal being the most common and used in this video. Complication rates from shoulder arthroscopy are low but include shoulder stiffness, iatrogenic tendon injury, and vascular injury. Therefore, proper patient selection, patient positioning, and appropriate portal selection are essential for successful shoulder arthroscopy. Here, we discuss the shoulder arthroscopy and demonstrate the technique on a cadaver shoulder.
Orthopaedics; rotator cuff; acromion.
Before pursuing a shoulder arthroscopy, a thorough history and physical exam should be obtained for proper patient selection. Obtaining the history of present illness should focus on gathering information about the location of the injury and how it occurred. A focused physical exam with special maneuvers should be used to localize the injured joint or tendon, and confirmed with imaging. Proper patient positioning and portal selection is vital before starting the arthroscopy. Here, we demonstrate the beach chair position (BCP) technique with a posterior portal entry for the shoulder arthroscopy on a cadaver shoulder.
Questions to Ask while Conducting the History
- Where is the location of the pain?
- This helps localize the pathology to the anterior, posterior, or lateral shoulder.
- When was the onset of the pain?
- This is to determine whether it is acute or chronic.
- Was there a predisposing injury or trauma?
- Is there pain with motion?
- Is there an equal range of motion on both sides?
- Is there partial (subluxation) or complete (dislocation) instability? What is the direction of the instability?
- Anterior and posterior dislocations are most likely due to trauma. Multidirectional instability is due to repetitive microtrauma, commonly seen in overhead athlets, or due to genetic conditions affecting connective tissue, particulary ligaments.22
- What is the patient’s occupation? How is the shoulder used in daily activities?
- Has there been a previous shoulder injury or surgery?
- Does the patient have any chronic conditions such as osteoporosis?
- Visually inspect the shoulder for skin changes, scars, swelling, symmetry, and scapular winging.
- Palpate the acromioclavicular (AC) joint and surrounding bony prominences. Palpate the deltoid, trapezius, rotator cuff, and biceps tendons.
- Check the active and passive range of motion (flexion, extension, abduction, adduction, internal and external rotation).
- Special tests:1
- Neer impingement sign: Place one hand on the patient’s scapula and use the other hand to take the patient's internally rotated arm by the wrist and place it in full flexion. This will test for shoulder impingement or rotator cuff tear.
- Jobe’s test: Have the elbow in full extension with the shoulder abducted 90 degrees and horizontally adducted 30 degrees. Then internally rotate the arm and press down while the patient resists. Weakness or pain indicates supraspinatus weakness or impingement.
- Hawkins-Kennedy Test: Performed by flexing the patient’s shoulder and elbow to 90 degrees, then internally rotating the arm. A positive test, indicated by pain during internal rotation, suggests impingement of the supraspinatus tendon or subacromial bursa.
- Yocum’s Test: During the test, the patient places their hand on the opposite shoulder and raises their elbow without moving the shoulder. A positive test, indicated by pain during the maneuver, suggests the presence of shoulder rotator cuff impingement.
- Patte’s Test: During the test, the patient’s arm is elevated to 90 degrees in the scapular plane with the elbow flexed at 90 degrees. The examiner then applies an internal rotation force to the forearm, and the patient is asked to resist this movement by externally rotating the shoulder. A positive test is indicated by pain or significant weakness, suggesting a potential tear in the rotator cuff, specifically the teres minor and infraspinatus.
- The Lift-Off Test: Assesses the subscapularis muscle by having the patient place their hand on their lower back and lift it away. A positive test, indicated by an inability to lift the hand or significant weakness, suggests a subscapularis tendon tear.
- The Palm-Up Test: Evaluates the long head of the biceps tendon. The patient extends their arm forward with the palm up while the examiner applies downward resistance. Pain in the bicipital groove indicates a positive test, suggesting biceps tendon pathology.
- Imaging should include anteroposterior (AP) and axillary views of the shoulder to assess for anterior or posterior dislocations and Hill Sachs lesions.2 Coronal CT scans can be used to identify fractures while axial CT scans can visualize reverse Hill Sachs lesions. MRI scans are utilized to assess for soft tissue injuries such as a full-thickness rotator cuff tear.3
The shoulder allows for a great range of motion with a tradeoff for a lack of stability, which predisposes to various injuries. The major joints of the shoulder include the AC, sternoclavicular, scapulothoracic, and glenohumeral joint.4 The glenohumeral joint is the most mobile joint in the body.5 The AC ligaments provide anterior and posterior stability to the AC joint with the superior component of the ligament providing the greatest stability.6 The trapezoid and conoid ligaments make up the coracoclavicular (CC) ligament, which provides vertical stability to the distal clavicle and stabilizes the overall AC joint.7 One of the most common shoulder injuries is AC joint separations where a direct impact, such as falling on the shoulder, can potentially lead to AC joint ligament and CC ligament tears with separation and superior displacement of the clavicle from the acromion.8 This is classified as a Rockwood type III tear and results in pain with the abduction of the shoulder and an obvious deformity on presentation.9
Shoulder arthroscopy is the preferred method of treatment over open surgeries for shoulder pathologies that require surgical intervention. Benefits of arthroscopy include smaller incisions, improved visualizations, decreased risk of damage to vascular structures, and faster recovery and rehabilitation.10 Indications for the shoulder arthroscopy include repair of fractures and ligament tears such as rotator cuff repair, CC ligament repair for AC joint separation, superior labrum anterior and posterior (SLAP) repair, distal clavicle resection, subacromial decompression, and proximal humeral fracture repair.11 Other indications for the shoulder arthroscopy include loose body removal, the release of scar tissue, and severe severe degenerative arthritis, when shoulder arthroplasty is not preferable.10, 21
The rationale for performing a diagnostic shoulder arthroscopy is to examine and treat shoulder pathologies in a minimally invasive manner. This procedure is particularly useful for the repair of various ligament tears in the shoulder, as well as removing loose bodies, adhesions, and scar tissues. The continued advancement in the safety and efficacy of arthroscopy makes it appealing for both surgeons and patients over open shoulder surgeries.
There are two main patient positioning for shoulder arthroscopy: the lateral decubitus position (LDP) and the BCP. The LDP has the patient placed laterally on the table with the surgical arm in a sling with traction applied longitudinally.12 Traction applied to the surgical arm increases visualization of the glenohumeral joint and subacromial space but leads to higher rates of nerve injuries.13 In the BCP, the patient is sitting upright with a 60-degree hip flexion, and the surgical arm is placed on a sterile holder or Mayo stand.14 Advantages of this upright anatomic position include reduced traction, fewer complications from portal placement, and reduced surgical time.15,16 The main disadvantage to the BCP is intraoperative hypotension from the reduced cardiac output and mean arterial pressure under general anesthesia; however, this also reduce intraoperative bleeding.17 Therefore, regional anesthesia is the preferred method of anesthetizing the patient and peripheral nerve blocks can be used to reduce the risk of postoperative complications.18
After bony landmarks are identified, it is time for portal placement. There are three main portals commonly used in shoulder arthroscopy. Depending on the specific pathology and the need for enhanced visualization and access, additional portals may be employed on a case-by-case basis. The primary portals are: posterior, anterior, and lateral. The secondary portals are: posterolateral, anterosuperior, anteroinferior (5 o'clock), posteroinferior (7 o’clock), anterolateral (port of Wilmington), Neviaser’s portal (Supraspinatus), axillary pouch portal, G-portal (SSN portal), Pec-portal (inferolateral portal).12
The posterior portal is the most common portal used and is demonstrated in this video. Entering the soft spot between the humeral head and the glenoid, it is the safest portal to visualize the entire joint.12 Care must be taken to avoid injuring the axillary nerve and suprascapular nerve.19 Common procedures performed using this entry point include rotator cuff repair, subacromial decompression, and anterior labral repair.20 Other posterior portals include the posterolateral portal, which is created with an outside-in technique and enters 2-3 cm below the posterolateral edge of the acromion and medial to the subacromial bursa.12 Similar to the anterolateral portal, entering too inferior risks injury to the axillary nerve.19 This portal is best as a viewing portal for rotator cuff repairs and labral repairs in the LDP position.20 The 5-o’clock portal is established from the posterior portal to the 5-o’clock position of the glenoid at the inferior glenohumeral ligament.19 An inside-out technique greatly increases the risk of injury to the axillary nerve, musculocutaneous nerve, cephalic vein, and humeral cartilage.12 Therefore, this portal is limited and best used for anchor placement in Bankart lesions in the LDP with an outside-in approach.23 The posteroinferior portal is created with an inside-out approach to enter the 7-o’clock position on the glenoid from the anterior portal.20 The posterior circumflex humeral artery, axillary nerve, and suprascapular nerve are at greatest risk of injury from this portal placement.24 This portal is mainly used for loose body removal and posteroinferior labral fixation.24 The axillary pouch portal is an alternative to the posteroinferior portal that enters the inferior glenohumeral recess with an outside-in approach.25 With the axillary nerve further away, it can be safely used for loose body removal, synovectomy, and anchor placement on the posteroinferior glenoid rim.25
Anterior portals include the anterolateral portal which enters the undersurface of the acromion 2-3 cm distal to the lateral edge.19 There is a risk of injuring the axillary nerve if the portal is placed too inferiorly. This portal is useful for the treatment of AC joint separation and subacromial impingement.20 The anteroinferior portal is created with an inside-out approach and enters the anterior capsule just superior to the subscapularis tendon, providing better access to the glenoid neck and inferior glenoid.26 The cephalic vein and axillary nerve are at greatest risk of injury with this portal placement.20 This portal is combined with an anterosuperior portal for anterior shoulder capsulorrhaphy.26 The anterosuperior portal uses an outside-in technique to enter between the coracoid and acromion and anterior to the long head of the biceps tendon.19 The cephalic vein and axillary nerve are at a lower risk of injury compared to the anteroinferior portal.20 In addition to anterior capsule procedures, the anterosuperior portal can be used for anchor placement on the glenoid for superior labral anterior-posterior (SLAP) repair.20
Some special portals used in arthroscopy include the Neviaser portal which enters the soft spot between the clavicle, acromion, and scapular spine, and is used for suture fixation during SLAP repair. The suprascapular nerve and artery are at the greatest risk of injury from this portal.12 The portal of Wilmington (Anterolateral portal) is also used in SLAP repairs for anchor placement and is created by entering medial to the musculotendinous junction toward the coracoid tip.12 The axillary nerve is at the greatest risk of injury if placed too inferiorly.20 The suprascapular nerve portal is used for suprascapular nerve decompression and is created with an outside-in approach to enter between the clavicle and scapular spine.27 The suprascapular nerve within the suprascapular notch and the suprascapular artery are at the greatest risk of injury with this portal.20
Postoperative pain management is one of the most important components of a successful recovery following shoulder arthroscopy. Appropriate pain control allows for early rehabilitation, improves outcomes, and increases patient satisfaction.28 Since there is a wide range of options available for pain management, medications should be individualized for the patient’s needs. Nerve blocks such as interscalene nerve blocks and suprascapular blocks lead to lower pain scores and longer time from surgery to using systemic analgesics such as opioids.29 After adequate pain control, it is imperative for patients to get rehabilitation therapy to improve function and reduce shoulder stiffness. Variations exist in early versus delayed rehabilitation protocols following arthroscopy. Early rehabilitation is thought to benefit patients by improving range of motion and functional scores while delayed rehabilitation is thought to benefit by preventing a reinjury. A systematic review found significantly increased functional scores within the first 3-6 months with early rehabilitation compared to delayed rehabilitation, with no significant increase in reinjury.30 An optimal rehabilitation protocol that attempts to strike a balance between protecting the healing repaired tissue and avoiding re-injury should be established for each patient.
Complication rates ranging from 4.6–10.6% have been reported with shoulder arthroscopy.31 The most common complications include shoulder stiffness, iatrogenic tendon injury, and vascular injury.32 Therefore, each arthroscopic procedure should be conducted with extreme care to not injure the axillary nerve, musculocutaneous nerve, cephalic vein, and other structures in the surrounding area. Contraindications for shoulder arthroscopy include distorted anatomy that hinders proper portal placement and infection at the site of portals, while special care must be taken when performing arthroscopies on patients with severely increased body mass index.33 If patients are symptomatic despite nonsurgical treatment with NSAIDs for pain control and rehabilitation with strength and stretching exercises, but contraindications for shoulder arthroscopy present, then depending on the type of pathology open shoulder surgery such as arthroplasty can be explored.
Citations
- Essentials of musculoskeletal care. Rosemont,IL: Jones&Bartlett Learning.
- Varacallo M, Musto MA, Mair SD. Anterior shoulder instability. Statpearls. Treasure Island (FL): StatPearls Publishing. StatPearls Publishing LLC.; 2020.
- Dinnes J, Loveman E, McIntyre L, Waugh N. The effectiveness of diagnostic tests for the assessment of shoulder pain due to soft tissue disorders: a systematic review. Health Technol Assess. 2003;7(29):iii, 1-166. doi:10.3310/hta7290.
- Miniato MA, Anand P, Varacallo M. Anatomy, shoulder and upper limb, shoulder. Statpearls. Treasure Island (FL): StatPearls Publishing. StatPearls Publishing LLC.; 2020.
- Chang LR, Anand P, Varacallo M. Anatomy, shoulder and upper limb, glenohumeral joint. Statpearls. Treasure Island (FL): StatPearls Publishing. StatPearls Publishing LLC.; 2020.
- Wong M, Kiel J. Anatomy, shoulder and upper limb, acromioclavicular joint. Statpearls. Treasure Island (FL): StatPearls Publishing. StatPearls Publishing LLC.; 2020.
- Marchese RM, Bordoni B. Anatomy, shoulder and upper limb, coracoclavicular joint (coracoclavicular ligament). Statpearls. Treasure Island (FL): StatPearls Publishing. StatPearls Publishing LLC.; 2020.
- Lee S, Bedi A. Shoulder acromioclavicular joint reconstruction options and outcomes. Curr Rev Musculoskelet Med. 2016;9(4):368-377. doi:10.1007/s12178-016-9361-8.
- White S, Pearsall A. Acromioclavicular joint separation. In: Eltorai AEM, Eberson CP, Daniels AH, eds. Orthopedic surgery clerkship: A quick reference guide for senior medical students. Cham: Springer International Publishing; 2017:65-68.
- Farmer KW, Wright TW. Shoulder arthroscopy: the basics. J Hand Surg Am. 2015;40(4):817-821. doi:10.1016/j.jhsa.2015.01.002.
- Crimmins IM, Mulcahey MK, O'Brien MJ. Diagnostic shoulder arthroscopy: Surgical technique. Arthrosc Tech. 2019;8(5):e443-e449. doi:10.1016/j.eats.2018.12.003.
- Blanchard NP, Brockmeier SF. Diagnostic Shoulder Arthroscopy and Arthroscopic Anatomy. In: Werner BC, ed. MRI-Arthroscopy Correlations. Cham: Springer; 2022. doi:10.1007/978-3-030-94789-7_11.
- Rains DD, Rooke GA, Wahl CJ. Pathomechanisms and complications related to patient positioning and anesthesia during shoulder arthroscopy. Arthroscopy. 2011;27(4):532-541. doi:10.1016/j.arthro.2010.09.008.
- Higgins JD, Frank RM, Hamamoto JT, Provencher MT, Romeo AA, Verma NN. Shoulder arthroscopy in the beach chair position. Arthrosc Tech. 2017 Jul 31;6(4):e1153-e1158. doi:10.1016/j.eats.2017.04.002.
- Peruto CM, Ciccotti MG, Cohen SB. Shoulder arthroscopy positioning: lateral decubitus versus beach chair. Arthroscopy. 2009;25(8):891-896. doi:10.1016/j.arthro.2008.10.003.
- Gelber PE, Reina F, Caceres E, Monllau JC. A comparison of risk between the lateral decubitus and the beach-chair position when establishing an anteroinferior shoulder portal: a cadaveric study. Arthroscopy. 2007;23(5):522-528. doi:10.1016/j.arthro.2006.12.034.
- Murphy GS, Szokol JW. Blood pressure management during beach chair position shoulder surgery: what do we know? Can J Anaesth. 2011;58(11):977-982. doi:10.1007/s12630-011-9573-8.
- Kim DC, Pearsall A. Rotator cuff pathology. In: Eltorai AEM, Eberson CP, Daniels AH, eds. Orthopedic surgery clerkship: A quick reference guide for senior medical students. Cham: Springer International Publishing; 2017:43-46.
- Meyer M, Graveleau N, Hardy P, Landreau P. Anatomic risks of shoulder arthroscopy portals: anatomic cadaveric study of 12 portals. Arthroscopy. 2007;23(5):529-536. doi:10.1016/j.arthro.2006.12.022.
- Paxton ES, Backus J, Keener J, Brophy RH. Shoulder arthroscopy: Basic principles of positioning, anesthesia, and portal anatomy. J Am Acad Orthop Surg. 2013;21(6):332-342. doi:10.5435/jaaos-21-06-332.
- George MS. Arthroscopic management of shoulder osteoarthritis. Open Orthop J. 2008;2:23-26. Published 2008 Feb 21. doi:10.2174/1874325000802010023.
- Daniel J. Johnson; Prasanna Tadi.Multidirectional Shoulder Instability. StatPearls. Treasure Island (FL): Treasure Island (FL): StatPearls Publishing; 2024 Jan
- Lo IK, Lind CC, Burkhart SS. Glenohumeral arthroscopy portals established using an outside-in technique: neurovascular anatomy at risk. Arthroscopy. 2004;20(6):596-602. doi:10.1016/j.arthro.2004.04.057.
- Davidson PA, Rivenburgh DW. The 7-o'clock posteroinferior portal for shoulder arthroscopy. Am J Sports Med. 2002;30(5):693-696. doi:10.1177/03635465020300051101.
- Bhatia DN, de Beer JF. The axillary pouch portal: a new posterior portal for visualization and instrumentation in the inferior glenohumeral recess. Arthroscopy. 2007;23(11):1241.e1241-1245. doi:10.1016/j.arthro.2006.12.016.
- Inoue J, Tawada K, Yamada K, et al. Risk of cephalic vein injury during the creation of an anterior portal in shoulder arthroscopy. Orthop J Sports Med. 2024 May 8;12(5):23259671241248661. doi:10.1177/23259671241248661.
- Lafosse L, Tomasi A, Corbett S, Baier G, Willems K, Gobezie R. Arthroscopic release of suprascapular nerve entrapment at the suprascapular notch: technique and preliminary results. Arthroscopy. 2007;23(1):34-42. doi:10.1016/j.arthro.2006.10.003.
- Warrender WJ, Syed UAM, Hammoud S, et al. Pain management after outpatient shoulder arthroscopy: a systematic review of randomized controlled trials. Am J Sports Med. 2017;45(7):1676-1686. doi:10.1177/0363546516667906.
- Wu EB, Hsiao CC, Hung KC, et al. Opioid-sparing analgesic effects from nterscalene block impact anesthetic management during shoulder arthroscopy: a retrospective observational study. J Pain Res. 2023 Jan 13;16:119-128. doi:10.2147/JPR.S397282.
- Gallagher BP, Bishop ME, Tjoumakaris FP, Freedman KB. Early versus delayed rehabilitation following arthroscopic rotator cuff repair: a systematic review. Phys Sportsmed. 2015;43(2):178-187. doi:10.1080/00913847.2015.1025683.
- Moen TC, Rudolph GH, Caswell K, Espinoza C, Burkhead WZ Jr, Krishnan SG. Complications of shoulder arthroscopy. J Am Acad Orthop Surg. 2014;22(7):410-419. doi:10.5435/jaaos-22-07-410.
- Weber SC, Abrams JS, Nottage WM. Complications associated with arthroscopic shoulder surgery. Arthroscopy. 2002;18(2 Suppl 1):88-95. doi:10.1053/jars.2002.31801.
- Rubenstein WJ, Lansdown DA, Feeley BT, Ma CB, Zhang AL. The impact of body mass index on complications after shoulder arthroscopy: should surgery eligibility be determined by body mass index cutoffs? Arthroscopy. 2019;35(3):741-746. doi:10.1016/j.arthro.2018.10.136.
Cite this article
Patrick Vavken, MD. Shoulder arthroscopy (cadaver). J Med Insight. 2024;2024(26). https://doi.org/10.24296/jomi/26Procedure Outline
Table of Contents
- Draw out bony landmarks: acromion, coracoid, soft spot.
- Use thumbnail to delineate anterolateral and posterolateral acromion.
- 2 cm inferior and slightly medial to acromial angle in the “soft spot” between infraspinatus and teres minor.
- Aiming toward coracoid, pierce skin with an 18-gauge needle.
- Insufflate joint with 50 cc of saline/epi solution.
- Make an incision with #11 blade.
- Place a blunt trocar through through capsule.
- Attach inflow to arthroscopic cannula, suction as well.
- Examine Glenoid, Biceps, Humeral Head, Subscapularis, and Rotator Interval.
- Visualize the RTC and Check the Bare Area, Labrum, and HAGL
- Create Instrument Portal Through Rotator Interval
- Test Biceps Tendon
- Enter Subacromial Space
- While in the subacromial space, release the CA ligament off the bone with a radiofrequency ablator.
Transcription
CHAPTER 1
Hi, I’m Patrick Vavken. This is Arvind von Keudell. We're going to take you through a cadaver - very basic step-by-step diagnostic shoulder arthroscopy. We’re in a beach chair position. This would be theoretically a 70-degree angle, which is hard to reproduce in a cadaver, and Arvind is going to do the landmarks. A good way to do the landmarks is if you put - push your thumb in a soft spot in between the clavicle and acromion and then just follow the outline of your thumb, it will give you a good baseline to get started. Plus, it’s a good stability for the skin because you pushing it down - it’s much easier. And then you get the anterior- posterior corners of the acromion. Run this anteriorly, posteriorly, and around the corner. It's alright. Obviously, our patient has some stability issues. You want to make sure you get the coracoid tip. And then what you want - and your AC joint. What you want to be marking from the coracoid tip upwards is your CA ligament, which sometimes you can actually feel through the skin in a skinny individual. It’s typically a Y-shape, fanning out pattern that’s narrower as shown here in the acromion and fans out down on to the coracoid tip as well as base - something to think about it when you go in for a subacromial decompression. If you follow your posterior part of your AC joint, it will give you your 50-yard midline incision. That's also above your synovial fold - for the bursa. So bursa will fold back here anteriorly - be mostly in there, And it should be okay back here.
CHAPTER 2
We will do an - a standard posterior portal, which is about a centimeter medial and inferior to the posterior corner of the acromion. If you want to go in for an instability, you want a bit more medially, a bit more lower, so you get a good angle with the glenoid. If you think about cuff repair, you want to be a lit - little more lat - a lot of little more higher, so you can get good exposure of the cuff through the subacromial space. One thing that we can do first is get a needle. Just peel it?\NYep. And you don't necessarily have to inject water. It can help - you don’t have to though. Just once you come in, you know you’re in the joint, and if you can move the needle up and down, you know the right - you're in the plane of the glenoid. And again, if you’re doing a cuff, it's not as important. If you're working on instability, you want to stick your scope right where your needle is. You want to make sure that you can go thr - in between glenoid and humeral head without scuffing anything, and like Arvind just did perfectly, stay in that plane so you can see everything anteriorly and work here without causing yourself too much trouble. Alright, now that we’re near where we want to be, we could inject or just go straight through skin. Again, we like to nick the skin - cut a little bigger. There we go. And one of the things that people don’t really appreciate is if you think about an 11 blade and your 4 or 5 scope, the blade is much narrower than the scope handle itself. So if you just cut with the tip of the scope, we’ll have a hard time just going through the skin- you’re going to feel a lot of resistance which is not your humeral head, or not your knee, or not your hip - you just have a hard time pushing through. So you want to make sure if you use an 11 blade, just cut a little more or stick it in all the way - either way. Alright, Arvind is going in. He will be piercing through teres minor, infraspinatus back there, and depending on interaxial rotations, it’s more tendinous or more muscular portion of the - of said muscle - and it’s going to be harder or easier. He's going to follow his index finger and reach for the coracoid, and as you can see, he’s got a nice pop into the shoulder. At this point, if you had injected water, there would be backflow, which there is none in this shoulder, but if you're not sure if you're in, that will be a good option to just help you find where you want to be. Alright. Coming in. That looks already pretty darn nice. Click in place and start water. Now how do we get out air bubbles? Air bubbles - you stick the scope into bubble and just let the air escape through the outflow - or suction. And then just you work your way up in the shoulder and flood the whole compartment.
CHAPTER 3
Alright, number one. Arthroscopy 101. It's called arthroscopy - not microscopy. Here we can see the initial fibroblast of the capsule quite nicely. You want to be pulling back to get better perception of everything and be sure where we are. And that's our first view. We want to see the glenoid, so you want to see the biceps, want to see the humeral head, and preferably even subscapularis. We’re a little high with our portal, but that's okay because we want to do a cuff later on anyway. Just looking at the biceps, you can see the direction of biceps is wrong. It’s not running across the joint. It's tilting down, so our thing is probably sublux, which is okay in this patient. Looking at humeral head, we can see some nice scuffing of the cartilage. Looking into the glenoid - looking at the glenoid, we’ll see bone-on-bone arthritis. Just remember that dead center of the glenoid - right here - is a stellate area where there can be no cartilage physiologically, and that's also how you can tell where the center of your glenoid is. So if you wanted to make sure there was some bone loss, you find this place, you take your probe, and you measure anteriorly, posteriorly - should be the same distance. If there’s some missing anteriorly, you lost some bone, and then you can just take your measurements to see how much is lost. Alright, now push in a little more anteriorly, and looking down, we can see the subscap down there and the MgO gel across from it. Remember, the importance of the subscap for shoulder repair and shoulder function has been elucidated repeatedly, and especially if you look into Toussaint, Lafosse, and a lot of French guys, it's a - they have really told us what this tendon does. This tissue high up here, that's your interval - rotator cuff - the rotator interval. This is where the shoulder breathes. This is the AOA in breathing a shoulder, and just as in ATLS, this might be one of the most important things and most important steps in any shoulder surgery. This tissue is really important. Don't destroy the vein. If you don't have to put a portal in here because all you want to do is just a quick diagnostic scope and a subacromial decompression, think about twice before you go through it because it's going to scar down, and it's going to cause some stiffness, alright? What’s the stiffness that’s going to get caused by it? We don’t really know how frozen shoulder happens. We just know it has myofibroblast infiltration, and it starts right here in interval. Right, and then functional-wise, they will probably have some...\NIf you think about how your shoulder moves, if you’re going to rotation, it’s really - it's in here - that’s where it freezes. And if you don't get that motion in there, it’ll be stiff, you’ll lose external rotation, and it’ll stiffen up from there. Same time, if you’re unstable down here, it's because this opens too wide, and that's where we do a closure.
Alright, now let's look at the cuff - look at the cuff in beach chair. We want to make sure that we go in a little bit of abduction, alright? You can see the top of the glenoid. That could be construed as a drive-through sign if we just fall in, which is correlated with laxity, but not indicative of a labral tear instability. Now looking over laterally, we have a great view of the cable. Stephen Burkhart - it's too bad that he's not here. You can see the cable running across the head, which is just beautiful. This is where all the force runs into the shoulder, the cable construction, and down here you can see the crescent of the cuff where small tears happen. If there was small tear in here, the stability is here. So this is the tissue you want to reproduce and create - and make sure that it's intact. Now we see nice - nice insertion of the supraspinatus, so we're probably not repairing that one today in here. Coming down laterally, we can start to see the bare area and the infraspinatus. Now as I said earlier today - keep going down a little bit - as I said earlier today, this is a bare area because you can see tendon, a little bit of bone, and intact cartilage. If you saw tendon, little bit of bone, intact cartilage, little bit of bone over here, that will be a Hill Sachs lesion. This guy does not have a Hill Sachs lesion. Coming down teres minor, going down into the inferior recess, he does have osteophytes. There we go. And looking over the labrum. Now, if you're - if you're working an instability, one of the most underappreciated defects is right here - your HAGL lesion. This way - this way - this way - this way - this way. You want to make sure that you see your capsule as it inserts into the - underneath the humeral head - because this is the hammock right here. If you only tighten on the glenoid side back here, but if you have a tear in the capsule down here, all you do is you pull the tissue over it - there’s no - going to be no stability - that's where the HAGL lesion lives - the humeral avulsion of the glenohumeral ligaments. There might be a little something in there actually, which is okay because it’s unstable. It’s just old age. Then we come up again. We can see the glenoid and the labrum. In a beach chair position, if you want to create some space, you will take 4 or 5 towels, wrap them up, you’ll take the fist of your assistant, and just stick it under the head. Can you see how that opens up? Just stick it under the head. Do not pull - you’re not pulling the patient off the bed. If you pull on your spine or something, you're pulling patient off the bed, kinking his neck, causing some issue that makes your anesthesiologist scream. You just stick a fist in there, a couple of towels, and all you got to do is actually adduct over this fulcrum - and see how nicely it opens up? You can't see anything - there's all your labrum. Let’s look anterior, inferior for a second. 3 o’clock. Again, you can’t see anything, and here is your labrum. Alright, well now at this point, we decided we're going to go in and do a little bit of a debridement.
So we will find our spinal needle. And we want to come right through the triangle - dead center. That’s okay - maybe a little high. Things is you can always control depth through your index finger, and as you talk to other people and reach for something, you won't be falling out or anything. The other beauty is whenever you use a needle, your fingertips will be pointing at each other. So you're really going for your middle finger fingertip, which might make things a little easier in here. It's a lot easier in elbows, and if you want to see a good elbow video, I think there's one on the web page - because you’re just pointing finger to finger. Alright. Then you get your knife. Remember, it's not just position - it’s also direction and everything. So we're going to try the... And then just roll, and... You're rolling through the tissue. There you go. Now with your switching stick in, you can already test for labral stability. You can test for biceps tendon stability, which is the Ramp Test, so if you want to push in a little more and try to see where the sulcus of the biceps is - top lateral. So you can see, the biceps should be sitting in here. Alright, and now as you push down, you can see how - first of all, you see more of the body of the biceps tendon. There's a lot of provocations - a lot of research that would in fact - that if you look at a biceps tendon intra-articularly, all you’ll see is about 1/3. And a lot of pathology is going to be down that tunnel, and you won't be able to see it. You can push your scope into the tunnel a little bit and look down and see a little more, but you know, if you see it injected, it’s probably going to be hurting down in there too. Now, if you pull back in and then use the tip of your - whatever instrument you have - and try and pull on the medial sling and the lateral sling, and if you see - see if you can push away that tissue. See if you can push away that tissue. See that's - that's in there. That by the way - that’s the comma sign. So you can see this tissue running down from the subscap into the supraspinatus. If both are torn, that's the famous comma tissue right here - so leave that. Don’t - that's nothing to debride. Leave the stuff that’s important.
So Arvind is going to show us the ramp test now to check for biceps stability. He's going to use his switching stick first of all to go on top of the biceps tendon and pull it in medially, and you can see, it'll come out a little bit. You can also judge the outer surface of the biceps tendon. You can look down into the biceps tunnel a little more, which looks good, so at this point, you’re going to use the switching stick and check for your mediolateral sling. Lever off the comma tissue in between subscap and biceps tendon. See if that’s stable - it doesn’t displace - and then you come across and check the lateral part of the sling. Which looks good. Alright. Alright, at this point, we’d be happy, and we'll go subacromially.
In order to go subacromial, we’re going to take out the camera, bring back the obturator into the trocar. Now pull back. We go up. We feel for the corner of the acromion, all the way up - index fingers going to be on coracoid again. And you come across, and you try and touch the CA ligament here, which like - you should feel a pop as the trocar comes - swipes across the CA ligament like that. There’s a little - there it is - a little - our - that’s our CA ligament. That’s what cleans up the bursa a little bit, and that's where we want to be because eventually - we can just leave the camera here or there. We want to be in a place, right there, that if you come in, we’re going to see the CA ligament. So right now, down in there, we’re going to change for the camera. So we want to be looking straight up and a - maybe a little laterally. We want to be just a little anterior of the 50-yard line. Because I pin my instrument there...\NScope. And... There you go. Alright. So, you can just pull back a little bit here. Alright. My personal favorite is I'll just shave out as much as I need to shave because it’s going to bleed anyway, and then you find your bleeders. There’s always one big bleeder posteromedially, so there’s always going to be some bleeding back there. And then there's the thoracoacromial ligament - excuse me, thoracoacromial artery running with the coracoacromial ligament. There’s going to be some bleeding up here. So you get the bleeder here. You get the bleeder there. Everything else should be taken care of by the epinephrine in the bag. You don't necessarily have to go way too medial because we can see the cuff, and we can see everything.
CHAPTER 4
We just want to make sure that there’s no adhesions on the cuff laterally / anteriorly. So that big band that runs down anterolateral - that I get. So now we're looking subacromially. We can see the shiny fibers of the CA ligament at the anterolateral portal of the acromion. Alright, an important thing is not just take away everything - we’re just releasing the CA ligament off the bone. You can see it actually loops around the corner of the acromion. It can be sticking on the undersurface, causing impingement just by tissue, and that can go - or we’ll want to leave the most anterior part - just release if off the bone. It’ll scar back down again - give us some anterior, superior stability of the shoulder in the future. You can now see Arvind just scraping off the ligament from the bone, and you can see how the tip will just fol - starting to fold down with the release. Come across laterally. There you go. Yep. Very nice. Now we want to clear off just the acromion - not open the AC joint. That's one of the little things to remember. Okay, so Arvind did a great job releasing a CA ligament of the acromion. You can see ligament running down here, dangling in there. These are fibers of the - last few fibers in there are delta's fascia actually. There’s a little loose body, and we’ll take out in a second. And then looking up, you can see the anterolateral corner of the acromion. We don't see much of a spur, so we don’t necessarily have to take that off. There's no evidence proving that it will improve outcomes after cuff repair. If you use a pass-through, you want to make sure you have enough space to work, so sometimes you’ll take out some bone. When you take out bone, remember on the X-ray, not just to look on the outlet view for A, B, C types - actually 1, 2, 3 types - but on the lateral, you want to make sure that the acromion is actually thicker than 8 millimeters, so if it take off 5, you leave some bone. I was researched by Dr. Schneider, back in the day - never published really - it's only an abstract in JBJS - but he looked at some like 200 cuff repairs and found that in the type 3 females, about 1/3 had an acromion thinner than 8 millimeter, so if you took off too much with an acromioplasty, you have a high risk of a fracture after really. Alright, awesome.